

Federal Highway Administration

SAFETY EDGE

Module 1: Introduction of EDC Initiatives

Level of Audience: Engineers, Project Managers and Municipal Authorities

Instructor: Dr. Benjamín Colucci

Duration: 1.5 Hours

AAA AASHTO DTOP DUI EDC EIS FAQ's FARS **FHWA** NHTSA OGFC PCC **PRHTA** PRLTAP RAP RC RDG ROR SE SWM TRB **WMA**

Acronyms

American Automobile Association American Association of State Highways and Transportation Officials Department of Transportation and Public Works **Driving Under Influence Every Day Counts Environmental Impact Statements Frequently Asked Questions** Fatality Analysis Reporting System Federal Highway Administration National Highway Traffic Safety Administration **Open Graded Friction Course** Portland Cement Concrete Puerto Rico Highway and Transportation Authority Puerto Rico Local Technical Assistance Program **Reclaimed Asphalt Pavement** Ramp Champ **Roadside Design Guide** Run Off the Road Safety Edge Shoulder Wedge Maker **Transportation Research Board** Warm Mix Asphalt

Learning Outcomes

- 1. Define the Puerto Rico Transportation Technology Transfer Center.
- 2. Define the Every Day Counts Initiative.
- 3. Discuss the Every Day Counts Initiatives.

Puerto Rico Transportation Technology Transfer Center

Dr. Benjamín Colucci benjamin.colucci1@upr.edu Director

Dr. Alberto M. Figueroa alberto.figueroa3@upr.edu Associate Director

Centro de Transferencia de Tecnología en Transportación

Excelencia en el Adiestramiento y Capacitación de Oficiales en la Transportación, Municipales y Estatales

Draft Module

Our Center

- Established in1986
- Civil Engineering Department, University of Puerto Rico at Mayagüez
- Sponsors:
 - Local Technical Assistance Program (LTAP)
 - Department of Transportation and Public Works (DTOP)
 - Virgin Islands Department of Public Works

Present...

 58 LTAP Centers in United States including Puerto Rico

Tribal Centers:

- East Mississippi
- Colorado
- California
- North Valleys
- Alaska
- Northwest
- Oklahoma

Objectives

- Provide technical assistance to municipalities and local transportation agencies.
- Provide information in the planning, design, construction, maintenance and operation of transportation facilities.

Resources

- Office Space 1,200 feet ²
- Personnel
 - Director, Benjamín Colucci
 - Associate Director, Alberto M. Figueroa
 - Training Manager, Gisela González
 - Administrative Coordinators
 - Ms. Grisel Villarrubia
 - Mrs. Irmalí Franco
 - Students

Resources

- Technical Support
 - University professors specialized in different areas
 - Private sector instructors
 - Instructors from other centers in United States
- Specialized Equipment
- Audiovisual Equipment
- Computer Software's

Activities

- Bilingual Newsletter "El Puente"
- Technical Information Services
 - Technical Library/Audiovisual
- Computer Software's
- Postal Address/Electronic List
- Web site: <u>http://www.uprm.ed</u>
- Special Projects

Lessons Learned

 During the past 25 years, Puerto Rico Transportation Technology Transfer Center has learned the importance of:

- Instructor & Topic
- Audience Interest
- Quality, not quantity
- Consistency

Additional Information...

Phone: (787)834-6385 Fax: (787)265-5695 E-mail: grisel.villarubia1@upr.edu http://www.uprm.edu/prt2 Follow us on Facebook clicking "Like" on PR LTAP

Centro de Transferencia de Tecnología en Transportación

Excelencia en el Adiestramiento y Capacitación de Oficiales en la Transportación, Municipales y Estatales.

Federal Highway Administration

EDC INITIATIVES

Instructor: Eng. Alvin Gutiérrez

Historic Background of EDC Initiative

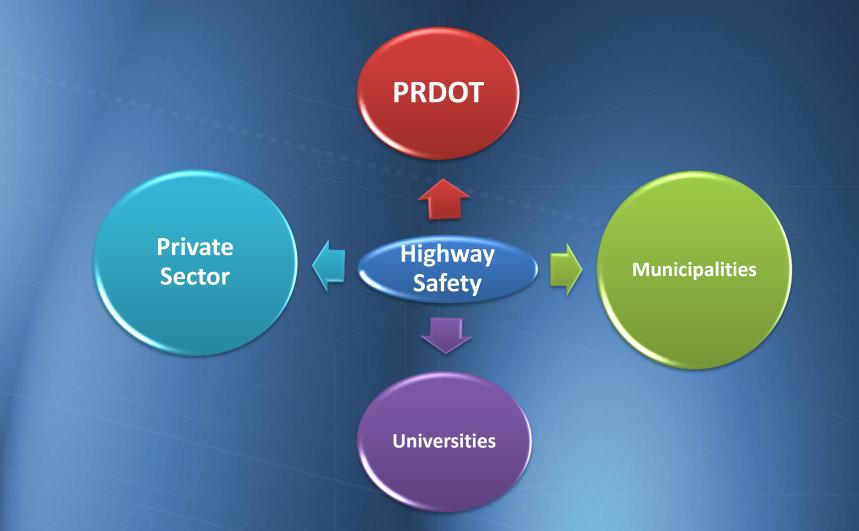
 The Every Day Counts Initiative (EDC) is designed to identify and deploy innovation aimed at

✓ shortening project delivery,
 ✓ enhancing the safety of our roadways, and
 ✓ protecting the environment.

Nine (9) EDC Initiatives

- 1. Warm-Mix Asphalt (WMA)
- 2. Safety Edge
- 3. Geosynthetic Reinforced Soil (GRS)
- 4. Prefabricated Bridge Elements Systems (PBES)
- 5. Adaptive Signal Control Technology (ASCT)
- 6. Enhanced Technical Assistance on Stalled EISs
- 7. Flexibilities in ROW
- 8. Flexibilities in Utility Relocation
- 9. Design Build (D-B)

Federal Highway Administration


EDC SAFETY EDGE IN PUERTO RICO

Instructor: Eng. Ana Torres

Is Highway Safety important for everyone?

Every Day Counts: Safety Edge in Puerto Rico

Literature Review
 Field Tests
 Safety Edge Specification
 Implementation of Safety Edge

Federal Highway Administration

WHAT IS SAFETY EDGE?

Instructor: Eng. Juan C. Rivera

Description of the Problem: Forgiving Roadside Concept

- Reasons by which a vehicle might leave the roadway and encroach on the roadside:
 - Driving under the influence of drugs or alcohol
 Adverse roadway conditions (weather)
 Vehicle component failure
 Driver distractions
 Crash avoidance
 Excessive speed
 Driver fatigue
 Poor visibility

Roadside Design Guide

- Roadside Design Guide, 4th
 Edition 2011
- American Association for State Highway and Transportation Officials (AASHTO)
- Included concepts:
 - Clear Zone
 - Slopes
 - Safety Devices

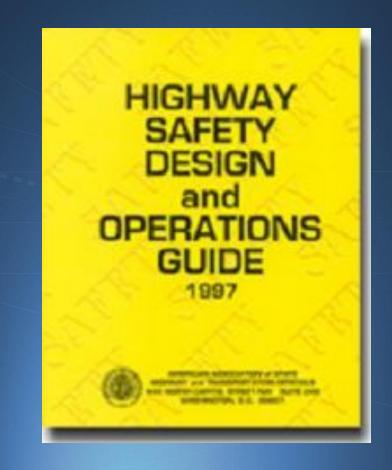
ROADSIDE DESIGN GUIDE

4th Edition 2011

nerican Association of State Highway and Transportation Officials

Description of the Problem: Clear Zone Concept

- Crashes before 1960's:
 Vehicle Head-on
 Adjacent Trees
- Crashes after 1960's:
 - Sign Supports
 - Ditches
 - Bridges
 - Piers



Description of the Problem: Clear-Zone Concept

"For adequate safety, it is desirable to provide an unencumbered roadside recovery area that is as wide as practical on a specific highway section. Studies have indicated that on high-speed highways, a width of 9 m [30 ft] or more from the edge of the through traveled way permits about 80 percent of the errant vehicles leaving the roadway to recover".

Description of the Problem: Clear-Zone Concept

Suggested Clear-Zone Distances from the Edge of Through Traveled Lane

(Table 3-1, Roadside Design Guide, 4th Edition 2011)

Design Speed (mph)	Design ADT	Foreslopes			Backslopes		
		1V:6H or flatter	1V:5H to 1V:4H	1V:3H	1V:3H	1V:5H to 1V:4H	1V:6H or flatter
≤40	UNDER 750°	7–10	7–10	b	7–10	7–10	7–10
	750-1500	10-12	12–14	b	12-14	12–14	12-14
	1500-6000	12-14	14–16	b	14–16	14–16	14–16
	OVER 6000	14–16	16–18	Ь	16–18	16–18	16–18
45–50	UNDER 750°	10–12	12–14	b	8–10	8–10	10–12
	750-1500	14–16	16–20	b	10-12	12-14	14–16
	1500-6000	16–18	20–26	b	12-14	14-16	16–18
	OVER 6000	20–22	24–28	b	14–16	18–20	20–22
55	UNDER 750°	12–14	14–18	b	8–10	10-12	10-12
	750-1500	16-18	20-24	Ь	10-12	14-16	16-18
	1500-6000	20-22	24-30	Ь	14-16	16-18	20-22
	OVER 6000	22–24	26–32ª	b	16–18	20–22	22–24
60	UNDER 750°	16–18	20–24	Ь	10-12	12–14	14–16
	750-1500	20-24	26-32	b	12-14	16-18	20-22
	1500-6000	26-30	32–40 ^a	b	14-18	18-22	24-26
	OVER 6000	30–32ª	36–44 ^a	b	20–22	24–26	26–28
65–70 ^d	UNDER 750 ^c	18–20	20–26	b	10-12	14–16	14–16
	750-1500	24-26	28–36 ^a	b	12-16	18–20	20-22
	1500-6000	28–32 ^a	34–42 ^a	b	16-20	22-24	26-28
	OVER 6000	30-34*	38-46*	Ь	22-24	26-30	28-30

NHTSA Crash Statistics

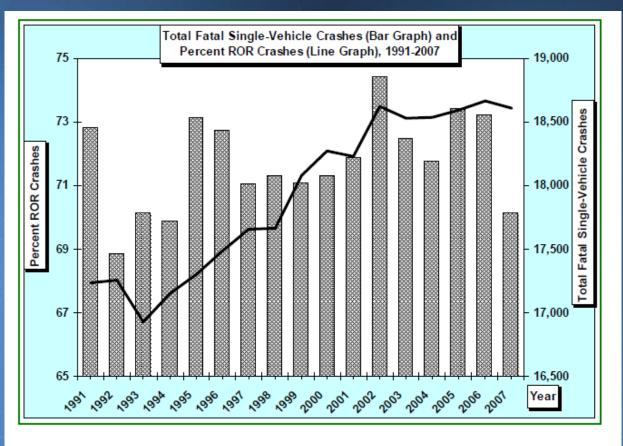
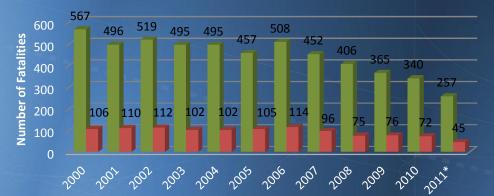
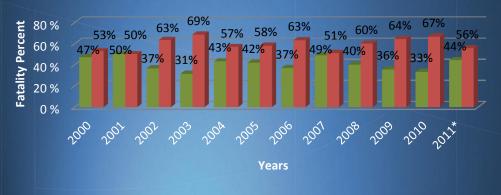



Figure 1. Total Passenger Vehicle Fatal Single-Vehicle Crashes (Bar Graph) and the Percent of ROR Crashes (Line Graph), 1991-2007 (FARS 1991-2007).

Quick Facts and Statistics



Fatalities "Off Roadway" in Puerto Rico

Years

Total Fatalities Off Roadway

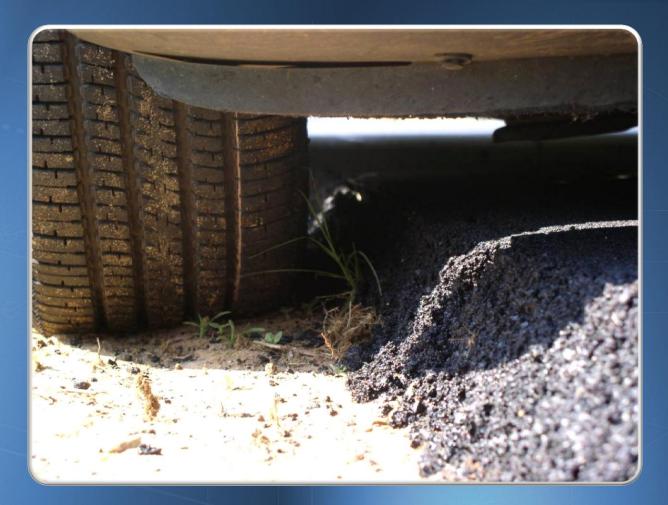
Urban vs. Rural "Off Roadway" Fatality Percent

Urban Fatality Percent

Rural Fatality Percent

Data Source: Comisión para la Seguridad en el Tránsito

Animation: Roadway Without Safety Edge



Pavement without Safety Edge

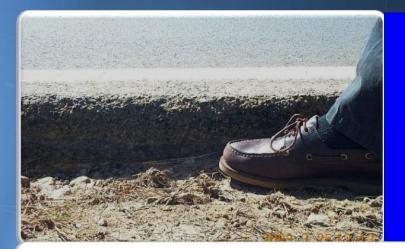
Pavement Edge Drop-off

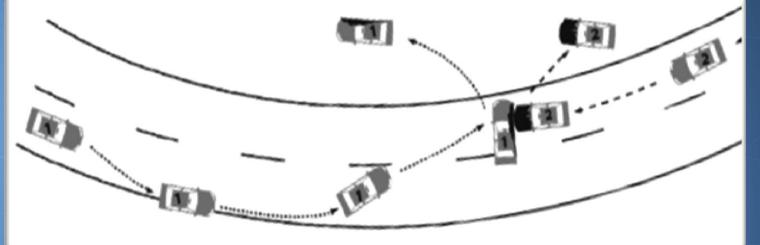
Unpaved Shoulder

Pavement Edge Raveling

Pavement Edge Drop-off: 1 year after construction

Are Pavement Edge Drop-offs a problem?





Typical Drop-off Crash with Tire Scrubbing

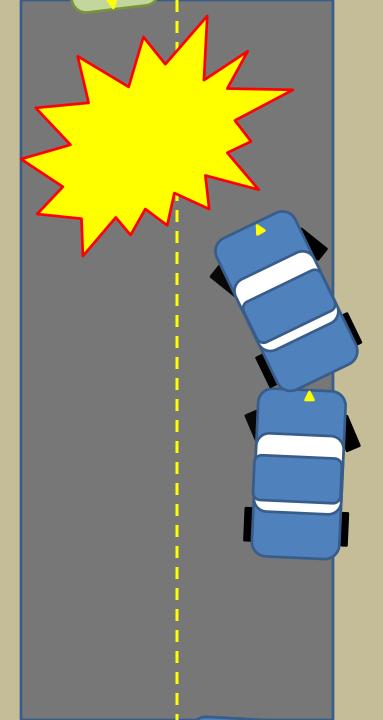
THE PROBLEM

Crashes Caused by Edge Drop-offs:

Edge Drop-Off Crash Types

Rollover

Opposing Sideswipe



Roadside Object

Head-on

Driver crosses over into oncoming traffic

Driver Overcompensates Steering

Right tires leave edge of pavement

Locations at High-Risk for Drop-offs

- 1. Horizontal Curves
- 2. Near Roadside Mailboxes
- 3. Turnarounds/Unpaved Pull-Outs
- 4. Eroded Areas
- 5. Asphalt Pavement Overlays

Horizontal Curves

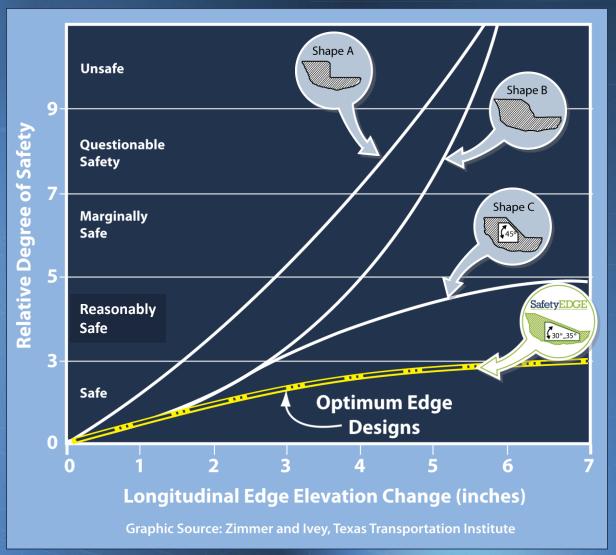
Mailboxes

Turnarounds/Unpaved Pull-Outs

Eroded Areas

Asphalt Overlay

2" Asphalt Overlay

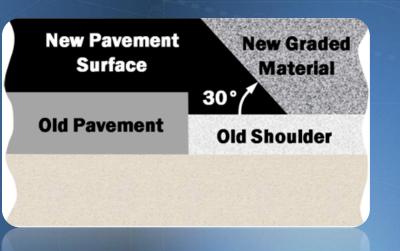

+ Existing 5" Drop-off

= Extreme Unsafe Condition

Edge Shape Degree of Safety

Adapted from: The Influence of Roadway Surface Discontinuities on Safety (TRB)

The Safety Edge: The Practical Solution



Review: What is Safety Edge?

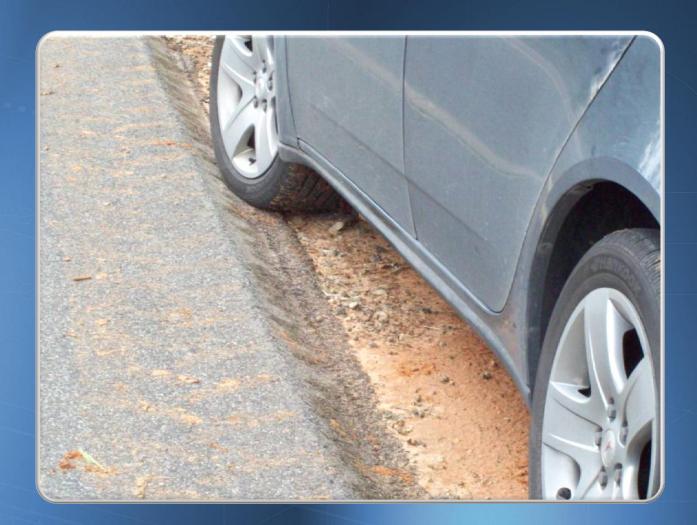
- Easy and inexpensive solution
- 30° pavement edge drop-off
- Improve durability of pavement
- Safer roadway edge

Draft Module

The Safety Edge Solution

30-Degree Angled Edge

Special Attachment: Safety Shoe



Safety Edge: After 6 years

Federal Highway Administration

Questions?

Federal Highway Administration

EDC SAFETY EDGE DEMONSTRATION PROJECT

Instructor: Eng. Juan C. Rivera

Demonstration Project: Locations

In the next sections, we will provide literature review of the following locations:

- Seaford, Delaware
- Jasper County, Iowa

– Columbus, Mississippi

Title:

- Safety Edge Project Demonstration: Seaford, Delaware Location:
- Along Old Furnace Road, Delaware

Authors:

- Harold Von Quintus
- Jagannath Mallela
- **Sponsoring Agency:**
- Office of Infrastructure, Federal Highway Administration
- **Performing Organization:**
- Applied Research Associates, Inc.

24-Foot Roadway Width

Planned 2.0 inch WMA 9.5 mm Overlay

HMA patch placed full roadway width in localized areas with very extensive cracking and distortions.

Existing roadway widened by 1 ft on each side.

Source: Safety Edge Demonstration Project, Seaford Delaware Field Report

Overall Opinion of the SE:

- No detrimental impact on paving operations
 Slope of the SE:
- Average Slopes: 37°-50°
- Construction personnel suggested (20°-25°) slope by to meet 30° requirement

		Slope of Safety Edge _{SM}	
Section/Area Designation		Mean, degrees	Coefficient of
			Variation, %
Prior to Rolling; mean of two areas		34.1	5.2
After Final Rolling			
1	Advant-Edger	45.4	10.8
2	Advant-Edger	50.0	11.4
3	TransTech Shoulder Wedge Maker	36.6	24.3

Adapted from: Safety Edge Demonstration Project, Seaford Delaware Field Report

Placement:

a)

- a) TransTech: Shoulder Wedge Maker (SWM)
- b) Advant-Edger: Ramp Champ (RC)

c) Warm Mix Asphalt (WMA)

C

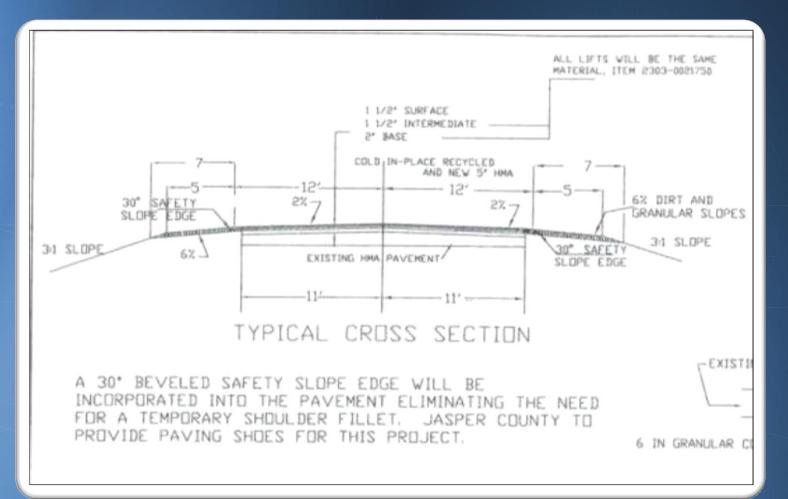
Adapted from: Safety Edge Demonstration Project, Seaford Delaware Field Report

b)

Title:

- Safety Edge Project Demonstration: Jasper County, Iowa Location:
- Route F62 in Sully

Authors:


- Paul Littleton
- Jagannath Mallela
- **Sponsoring Agency:**
- Office of Infrastructure, Federal Highway Administration
- **Performing Organization:**
- Applied Research Associates, Inc.

Snovation

in a Bination

Adapted from: Safety Edge HMA Demonstration Project, Jasper County, Iowa Field Report

Overall Opinion of the SE:

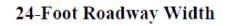
- The paving operation was not noticeably slowed or otherwise inconvenienced by incorporating the Safety Edge
- However, the average slope of the completed Safety Edge was greater than the targeted 30°
- It would be beneficial to be able to decrease the angle of the device when using HMA mixtures for which the slope angle tends to increase when compacted.

Slope of the SE:

Average Slopes: 38°

Adapted from: Safety Edge HMA Demonstration Project, Jasper County, Iowa Field Report

Title:


 Safety Edge Project Demonstration: State Route 182 near Columbus, Mississippi

Location:

- State Route 182 Authors:
- Harold Von Quintus
- Jagannath Mallela
- **Sponsoring Agency:**
- Office of Infrastructure, Federal Highway Administration
- **Performing Organization:**
- Applied Research Associates, Inc.

Planned 1.5 inch HMA 9.5 mm Overlay

Existing HMA Pavement; Surface Milled 1.5 inches Prior to Overlay

Existing shoulder trenched 2-foot wide to place 6 inches of 19 mm HMA base for widening both sides of roadway for placing rumble strip and an edge strip on both sides of roadway.

Overall Opinion of the SE:

- The slopes before and after rolling were found to be approximately equal (an average slope of 37.0 degrees after rolling compared to an average slope of 40.1 degrees prior to rolling).
- The density of the HMA mixture adjacent to the Safety Edge was found to be higher than along the unconfined edge in the areas placed without the Safety Edge a positive benefit from the Safety Edge device.

Slope of the SE:

Average Slopes: 37°

HMA Density Tests

Location of Cores

Adapted from: Safety Edge Demonstration Project State Route 182, Columbus, Mississippi Field Report

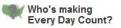
Introduction to EDC **Initiatives Quiz**

1. In total, there are _____ EDC Initiatives.

Home

3 a 6 b Q

The Every Day Counts Initiative


EDC is designed to identify and deploy innovation aimed at shortening project delivery, enhancing the safety of our roadways, and protecting the

The Safety Edge is an uncomplicated but extremely effective solution to reduce pavement edge-related crashes.

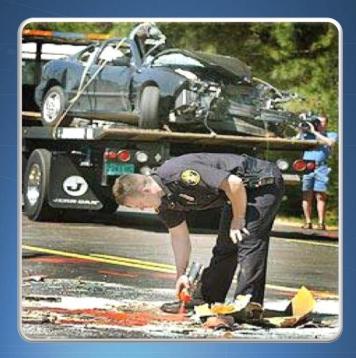
Read More >>

FHWA is requesting information under the Every Day Counts initiative regarding proven innovations that have the potential to transform the way we do business by shortening project delivery, enhancing the safety of our roadways, and protecting the environment.

Connecticut | Maryland | Nevada

Share your ideas on how to Shorten Project Delivery or Accelerate Technology & Innovation Deployment.

FHWA will work with the transportation community to leverage the following 21st century technologies and solutions to



Introduction to EDC Initiatives Quiz

2. "Run off the road" deaths are exclusively caused by Driving Under Influence (DUI) conditions.

a) True b) False

Review: Learning Outcomes

 Define the Puerto Rico Transportation Technology Transfer Center.
 Define the Every Day Counts Initiative.
 Discuss the Every Day Counts Initiatives.

References

- 1. EDC Presentation: Moving Your State Partners to Adopt the Safety Edge
- 2. Puerto Rico Transportation Technology Transfer Center
- 3. Roadside Design Guide, 4th Edition 2011
- 4. Safety Edge, Demonstration Project: Seaford Delaware Field Report
- 5. Safety Edge, Demonstration Project State Route 182: Columbus, Mississippi Field Report
- 6. Safety Edge, HMA Demonstration Project: Jasper County, Iowa Field Report
- 7. Safety Impacts on Pavement Edge Drop-offs
- 8. The Safety Edge: Your Angle for Reducing Roadway Departure Crashes (FHWA DVD)
- 9. http://www.fhwa.dot.gov/everydaycounts/projects/
- 10. http://www.fhwa.dot.gov/everydaycounts/technology/

Acknowledgement

This module was made possible through the collaboration of Eng. Juan C. Rivera, Eng. Ana L. Torres, Eng. Alvin Gutiérrez, Eng. Freddie Salado, Dr. Benjamín Colucci, Ms. Melvies Rodríguez, Mss. Leilany Benejam and Mr. Josué Ortiz.

End of Module #1: Introduction to EDC Initiatives

